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ABSTRACT 

 

Video sequences of road and traffic scenes are currently used for various purposes, such as studies 

of the traffic character of freeways. The task here is to automatically estimate vehicle speed from 

video sequences, acquired with a downward tilted camera from a bridge. Assuming that the studied 

road segment is planar and straight, the vanishing point in the road direction is extracted automati-

cally by exploiting lane demarcations. Thus, the projective distortion of the road surface can be re-

moved allowing affine rectification. Consequently, given one known ground distance along the road 

axis, 1D measurement of vehicle position in the correctly scaled road direction is possible. Vehicles 

are automatically detected and tracked along frames. First, the background image (the empty road) 

is created from several frames by an iterative per channel exclusion of outlying colour values based 

on thresholding. Next, the subtraction of the background image from the current frame is binarized, 

and morphological filters are employed for vehicle clustering. At the lowest part of vehicle clusters 

a window is defined for normalised cross-correlation among frames to allow vehicle tracking. The 

reference data for vehicle speed came from rigorous 2D projective transformation based on control 

points (which had been previously evaluated against GPS measurements). Compared to these, our 

automatic approach gave a very satisfactory estimated accuracy in vehicle speed of about ±3 km/h. 

 

 
1. INTRODUCTION 

 

Video sequences of road scenes are increasingly used in several contexts with an emphasis on auto-

mation, notably for tracking moving objects in a static background (video processing techniques for 

traffic applications are surveyed in Kastrinaki et al., 2003). Among the mobile mapping and video-

logging systems reported in literature (Tao & El-Sheimy, 2000) one finds multi-sensor systems with 

more than one camera, providing geo-referenced image sequences, as well as simpler options based 

on a single camera. In these single-image cases, measurement in 3D is generally impossible; hence, 

certain geometric constraints (such as the “flat-earth” model) must be adopted. Several approaches 

are founded on a priori knowledge of interior and exterior camera orientation (Dailey et al., 2000). 

However, the use of un-calibrated cameras with minimal external information allows flexibility and 

low cost. In such applications, the vanishing point in the road direction usually plays an important 

role. Simond & Rives (2003), for instance, compute the projectivity between two images using con-

straints from the dominant vanishing point, while Bose & Grimson (2003) use vanishing points esti-

mated from constant vehicle velocity. 

 

The potential of automatic single-image approaches is being currently studied for various purposes. 

Besides tasks such as the development of algorithms for automatic lane and obstacle detection, the 

studies of traffic flow parameters constitute a significant field of research. Video sequences from a 
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stationary camera may be used in this respect, with the application of image processing and vision 

algorithms to traffic scenes for queue detection and vehicle classification or counting (Dailey et al., 

2000). Ordinary video cameras present certain advantages over other means for monitoring vehicle 

speed with object tracking (Chun & Li, 2000). Indeed, the task was here to develop a simple method 

for automatically estimating vehicle speed, a crucial variable in studies of traffic flow and the traffic 

character of freeways. Vehicle speed estimations on congested highways based on an un-calibrated 

camera have already been reported (e.g. Dailey et al., 2000). In this case, a mean vehicle dimension 

was used for scaling purposes, thus leading to estimates for time-averaged mean vehicle velocity. 

Contrary to this, our task here was to measure the speed of individual cars for obtaining detailed in-

formation on speed distribution. The present implementation of our approach – which extends pre-

vious work of Grammatikopoulos et al. (2002) – is limited to the un-congested case. 

 

Given the time intervals between frames, estimation of speed is essentially a question of measuring 

distances in 1D. The video cameras used here are un-calibrated (i.e. camera constant, principal point 

location and image affinity parameters are irrelevant; on the contrary, radial lens distortion is taken 

into account). As regards exterior orientation, following basic assumptions are made: planar ground 

in front of a fixed camera; negligible image rotations about the vertical and camera axes. Thus, for 

1D measurements on a straight road segment the only requirements are knowledge of the vanishing 

point in the road direction and one known distance on the road plane. This information allows re-

moving perspective distortion by an affine rectification of the image sequence. Object segmentation 

and tracking are applied to the uniformly scaled frames for a more precise estimation of vehicle ve-

locity. Since in the existing literature numerical results from algorithms for individual vehicle speed 

estimation are sparse, aim of this contribution is to present the mathematical model and the vehicle 

tracking technique, but also to assess their practical performance with sufficient measurements. 

 

 

2. IMAGE RECTIFICATION 

 

The basic geometric model, described in more detail in Grammatikopoulos et al. (2002), makes use 

of the fact that, once the image horizon of a plane is defined, the affine properties of this image can 

be recovered. The vanishing line I∞ of the ground plane (horizon line) may be identified through the 

vanishing points in two orthogonal directions. The projective transformation between the image and 

the plane coordinates is expressed in homogeneous representation as Hx = X (Hartley & Zisserman, 

2000), whereby H is a 3x3 matrix with 8 independent coefficients, x is an image point and X a point 

on the ground plane. Knowledge of the third row of H – which represents I∞ and is found from the 

cross product of two vanishing points – allows the removal of pure projectivity (i.e. affine rectifica-

tion of the image). Orthogonality of the two directions restores angular relations. Yet, due to the 1D 

character of the studied problem (measurement of distances in a single direction), no need arises for 

correcting aspect ratio. Thus, the scale only along the road axis has to be restored, using one known 

ground distance in this direction. 

 

 

2.1 Rectification with one vanishing point 

 

Nevertheless, available lines do not suffice here for establishing two vanishing points, since parallel 

lines are identified along the road axis (Y-axis) but lane demarcations cannot be actually trusted as 

regards the orthogonal direction (X-axis). Grammatikopoulos et al. (2002) suggest an approach for 

cases where both vanishing points are finite, but only one of them is identified on the image. Here, 

however, the camera is assumed to have only a downward tilt (about its x-axis). Hence, lines ortho-

gonal to the road axis are imaged parallel to the x-image axis, i.e. the second vanishing point F2 is at 

infinity. On the image plane, vanishing points F1 in the direction of the road axis and F2 are then 
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expressed as F1 = [f1, f2, 1]
T
 and F2 = [1, 0, 0]

T
.  

 

Points F1 and F2 define I∞, a line parallel to the image x-axis. The point at infinity in the direction 

orthogonal to the road axis is, thus, forced to be transformed through H to the point at infinity of the 

image x-axis. Ignoring the coefficients which concern pure translation, affine rectification Hx = X 

between the image (x) and the ground plane (X) is finally expressed as follows (Grammatikopoulos 

et al., 2002): 
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As already mentioned, the aspect ratio does not have to be corrected. A suitably chosen scale factor, 

however, will improve the visual appearance of the resulting rectified image. A measured distance 

along the road axis relates the pixel size of the rectified image to the ground units in this particular 

direction. Thus, for a vehicle assumed to travel in the direction of the road axis, measurement in 

successive frames of its position along the image y-axis allows the estimation of its speed. 

 

2.2 Detection of vanishing point 

 

In Grammatikopoulos et al. (2002) the vanishing point of the road direction was extracted manually. 

Here, on the contrary, image edges were first extracted automatically using the Canny edge detector 

(Fig. 1, left). Next, relying on an extension of the approach presented by Rother (2000), edges were 

grouped in directions with a vanishing point voting process, and finally the vanishing point in the 

direction of the road axis was estimated automatically with a least squares adjustment (Fig. 1, right). 

 

  

Figure 1. Left: extracted edges using the Canny detector. Right: automatic 

estimation of the vanishing point in the road direction. 

 

3. OBJECT TRACKING 

 

In our previous work, measurement of corresponding vehicle points was made manually (Gramma-

tikopoulos et al., 2002). In the present contribution, vehicles were recognized and followed automa-

tically with the following process. 

 

3.1 Vehicle detection 

 

Blob detection was based on a simple background subtraction approach, in which an “empty” back-

ground image is generated from several frames by the iterative exclusion of outlying colour values. 
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Thus, for each pixel the RGB values from several frames are recorded, and the mean value gm along 

with the standard deviation σ for all three channels are estimated. The background model includes 

all pixels with values within the range gm ± σ. Image pixels with even one colour value falling out-

side this range are regarded as originating from moving objects and excluded. Outlying values are 

discarded one by one, and the statistical test is repeated among the remaining pixel values until it is 

satisfied. Fig. 2 shows a background image generated from four original images. 

 

     

Figure 2. Creation of background image (far right) 

from four successive rectified frames. 

 

The generation of background image is repeated over time or can be updated frame-by-frame taking 

into account possible illumination changes due to shadows and weather conditions (more sophisti-

cated tools may also be used to ensure higher accuracy, e.g. Stauffer & Grimson, 2000; Gutchess et 

al., 2001). Subtraction of the background image from a current frame results in an image containing 

only the foreground objects. This image is then binarized, and small holes within blobs are elimina-

ted with the dilation and erosion operations (morphological closing). Finally, vehicles are identified 

using connected-component labelling. Blobs with areas below a threshold (noisy pixels) are omitted 

from the process. This vehicle detection process is performed for every successive frame. The steps 

of the described procedure are seen in Fig. 3 

 

    

Figure 3. From left to right: foreground image 

(subtraction of background image from rectified image); 

binarization; morphological closing; detected blobs. 
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3.2 Vehicle tracking 

 

Once blobs have been identified, tracking is performed for all detected objects within the sequence 

using normalized cross-correlation. Goal of this process is the accurate estimation of speed for each 

individual vehicle appearing in the sequence by computing its vertical displacement through all re-

ctified frames. One known length in the road direction (e.g. the distance between two lane marks) 

suffices, as the only external information, for estimating Y-displacements of vehicles, as long as the 

scale in this direction has been restored. Most reported approaches for vehicle tracking compute the 

average velocity of the road lane by following the entire detected vehicle, or vehicle features, from 

frame to frame (e.g. Beymer et al., 1997; Dailey & Schoepflin, 2003). Such an estimation of speed, 

involving points of the vehicle which do not belong to the road plane, may be subject to a certain in-

accuracy since, in a strict sense, only the image-to-ground relation has been restored. 

 

Based on this consideration, our approach estimates displacement by tracking the lowest part of 

vehicles (which are closer to the ground plane) using normalized cross-correlation among frames. 

For each detected blob a rectangular image window is defined, containing sufficient information for 

the whole lower vehicle profile. The template width is adjusted according to the width of the pro-

file, while its height depends on the resolution of the rectified images and an average vehicle length. 

For instance, in Fig. 4 (left) the height of the correlation window was set to 40 pixels. This area was 

tracked along the following frames until the vehicle exits. The number in blue gives the correlation 

coefficient; the number in yellow is the measured distance in the vertical direction. 

 

    

Figure 4. Tracking of detected profiles in three successive 

affine frames with cross-correlation. 

 

It is remarked that, since image scale is uniform along the image y-axis, no need exists for window 

resizing, in contrast to the direct use of perspective imagery (Beymer et al., 1997). An additional ad-

vantage of our approach is the possibility of tracking cars, which either change lanes or travel large 

distances between frames. It is also worth mentioning that a lane mark may lead to mismatching if it 

is present in a correlation window. Therefore, cross-correlation is applied to subtracted foreground 

images rather than the initial rectified frames. 

 

In its current implementation the presented algorithm cannot handle, partial or complete, vehicle 

occlusions. However, it could be extended on the basis of other more robust position-predicting me-

thods (Melo et al., 2004), in order to ensure a more precise and generic estimation of vehicle move-

ment over time. 
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4. PRACTICAL EVALUATION 

 

Traffic flow was recorded from a bridge (10 m high) over a freeway with three lanes in each stream. 

The camera was looking centrally along the axis of the road with a downward tilt against the hori-

zontal (one finite vanishing point with the other assumed at infinity). The performance of the auto-

matic tracking and measuring algorithm was assessed against rigorous 2D projective transformation 

with sufficient ground control points based on manual image measurement. Frame dimensions were 

768x576 pixels, and the frequency was known as 25 frames/sec. A total of 20 vehicles in all three 

lanes were tracked. Relying on one known distance, speed was estimated from 4–8 frames, yielding 

different estimates. Assuming constant speed for each vehicle, from these estimates a mean speed 

(v) and a standard deviation (σ) were calculated, as seen in Table 1. 

 

Table 1. Speed estimation v ± σ (in km/h) 

        1D: automatic, affine images 

         2D: manual, metric images 

1D 2D 1D 2D 

v σ v σ v σ v σ 

78 ±1 79 ±1 134 ±2 133 ±1 

124 ±1 124 ±1 97 ±1 98 ±2 

137 ±2 136 ±1 118 ±2 118 ±1 

109 ±1 107 ±2 117 ±2 117 ±1 

110 ±2 110 ±1 134 ±1 134 ±1 

  97 ±1 97 ±2 137 ±2 136 ±2 

126 ±3 127 ±2 112 ±1 111 ±1 

149 ±3 148 ±1 95 ±2 95 ±1 

112 ±1 111 ±1 156 ±3 155 ±1 

115 ±1 115 ±1 122 ±2 122 ±2 

 

The above results clearly indicate that the automatic estimation of vehicle speed with the described 

tracking and measuring process, using frames subject to affine rectification, compares indeed well 

to the full 2D projective transformation based on manual image measurement. The overall algebraic 

mean difference between the two sets is 0.3 km/h and their RMS difference does not exceed 1 km/h. 

The uncertainty of individual measurements (σ) is below ±2 km/h. The validity of the 2D projective 

transformation had been checked against speed measurements with a GPS system on a moving car, 

and the differences of mean velocities were found below 1 km/h (Grammatikopoulos et al., 2002). 

Thus, the performed experiments indicate that the single image approach presented here may pro-

duce an estimated accuracy of about ±3 km/h. 

 

 

5. CONCLUDING REMARKS 

 

The presented algorithm allows automatic 1D measurements and subsequent estimation of vehicle 

speed form single un-calibrated images. It requires minimal external data (one known distance), if 

basic assumptions are adopted. It has been also shown that this method, using one vanishing point, 

is capable of providing metric results of satisfactory accuracy. The accuracy of the approach will be 

further assessed with more data. Basic error propagation tests, however, have shown that – at least 

for this particular configuration – results do not appear as very sensitive to small errors. Of course, 

certain aspects need further investigation. The configuration with two finite vanishing points, for in-
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stance, is under implementation. Furthermore, the question of vehicle occlusion is obviously very 

important for a more generic approach of both un-congested and congested traffic. 
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